Computing Exact Solutions to a Generalized Lax-Sawada-Kotera-Ito Seventh-Order KdV Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Exact Solutions to a Generalized Lax-Sawada-Kotera-Ito Seventh-Order KdV Equation

1 Universidad de Caldas, Calle 65 No. 26-10, P.O. Box: Apartado Aéreo 275, Manizales, Caldas, Colombia 2 Department of Mathematics, Universidad Nacional de Colombia, Carrera 27 No. 64-60, P.O. Box: Apartado Aéreo 275, Manizales, Colombia 3 Department of Mathematics, Universidad Nacional de Colombia, Calle 45, Carrera 30. P.O. Box: Apartado Aéreo 52465, Bogota, Colombia 4 Department of Mathemati...

متن کامل

Trivially related lax pairs of the Sawada-Kotera equation

We show that a recently introduced Lax pair of the Sawada-Kotera equation is nota new one but is trivially related to the known old Lax pair. Using the so-called trivialcompositions of the old Lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial Lax pairs of KdV and Sawada-Kotera equations.

متن کامل

A supersymmetric Sawada-Kotera equation

A new supersymmetric equation is proposed for the Sawada-Kotera equation. The integrability of this equation is shown by the existence of Lax representation and infinite conserved quantities and a recursion operator. PACS: 02.30.Ik; 05.45.Yv

متن کامل

Lie symmetry analysis and exact solutions of the Sawada–Kotera equation

In the present paper, the Sawada–Kotera equation is considered by Lie symmetry analysis. All of the geometric vector fields to the Sawada–Kotera equation are obtained, and then the symmetry reductions and exact solutions of the Sawada–Kotera equation are investigated. Our results show that symmetry analysis is a very efficient and powerful technique in finding the solution of the proposed equat...

متن کامل

trivially related lax pairs of the sawada-kotera equation

we show that a recently introduced lax pair of the sawada-kotera equation is nota new one but is trivially related to the known old lax pair. using the so-called trivialcompositions of the old lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial lax pairs of kdv and sawada-kotera equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2010

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2010/524567